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Miriam C. Klein-Flügge,1 David Nobbs,1 Julia B. Pitcher,2 and Sven Bestmann1

1Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London WC1 N3BG, United
Kingdom, and 2Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide SA 5005, Australia

Task-evoked trial-by-trial variability is a ubiquitous property of neural responses, yet its functional role remains largely unclear. Recent
work in nonhuman primates shows that the temporal structure of neural variability in several brain regions is task-related. For example,
trial-by-trial variability in premotor cortex tracks motor preparation with increasingly consistent firing rates and thus a decline in
variability before movement onset. However, whether noninvasive measures of the variability of population activity available from
humans can similarly track the preparation of actions remains unknown. We tested this by using single-pulse transcranial magnetic
stimulation (TMS) over primary motor cortex (M1) to measure corticospinal excitability (CSE) at different times during action prepara-
tion. First, we established the basic properties of intrinsic CSE variability at rest. Then, during the task, responses (left or right button
presses) were either directly instructed (forced choice) or resulted from a value decision (choice). Before movement onset, we observed
a temporally specific task-related decline in CSE variability contralateral to the responding hand. This decline was stronger in fast-
response compared with slow-response trials, consistent with data in nonhuman primates. For the nonresponding hand, CSE variability
also decreased, but only in choice trials, and earlier compared with the responding hand, possibly reflecting choice-specific suppression
of unselected actions. These findings suggest that human CSE variability measured by TMS over M1 tracks the state of motor preparation,
and may reflect the optimization of preparatory population activity. This provides novel avenues in humans to assess the dynamics of
action preparation but also more complex processes, such as choice-to-action transformations.

Introduction
Cortical neural activity elicited by the same stimulus or process
exhibits large trial-by-trial variability (Shadlen and Newsome,
1998), which is thought to arise from the stochastic nature of the
neuronal firing process (Rosner and Warzecha, 2011). Recent
work in animals has found that neural variability is, in turn, a
likely source of variability in motor responses (Churchland et al.,
2006b; Faisal et al., 2008; Miller and Katz, 2010), but can also
track the functional state of the motor system. For example, the
variability of neuronal firing rates recorded from primate premo-
tor cortex decreases before executing a prepared response, de-
spite little change in mean firing rate (Churchland et al., 2006a).
Furthermore, when firing rates are more variable, monkeys take
longer to execute the required action (Churchland et al., 2006a).

One theory is that this increase in firing rate consistency (and
thus lower variability) during the evolving action plan reflects an
optimization process that brings firing rates from their initial

state into a so-called “optimal subspace,” defined as the subset of
firing rates required to generate a sufficiently accurate movement
response (Churchland et al., 2006a; Afshar et al., 2011).

Whether the variability of a population response can predict
the state of action preparation, as has been reported at the single-
unit level, remains unknown. Based on theoretical grounds
(Sussillo and Abbott, 2009; Abbott et al., 2011) and direct neural
recordings in nonhuman primates (Churchland et al., 2010a), the
variability decline in neural responses during action preparation
is thought to reflect a network property. If this is indeed the case,
population measures of variability should similarly track the state
of action preparation. Here we sought to test this theory nonin-
vasively in humans by measuring changes in the variability of
corticospinal excitability (CSE) before a movement.

We applied transcranial magnetic stimulation (TMS) to the
hand representation of human primary motor cortex (M1). This
elicits a motor-evoked potential (MEP) in contralateral hand
muscles, which provides an index for the state of CSE of the pool
of neurons thus stimulated, potentially including cortical as well
as subcortical and spinal contributions. Importantly, the MEP
size reflects the current responsiveness of these pathways rather
than neuronal activity, which is measured in direct recordings.
We first characterized the precise relationship between MEP size
and variability at rest. This enabled identification of changes in
variability during action preparation over and above the intrinsic
changes in the CSE variability due to variations in MEP ampli-
tude. We expected that the variability of TMS-evoked responses
would show time-dependent fluctuations that reflect action
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preparation, with decreased variability closer to movement. Pre-
vious work has shown that CSE measures closely track action
preparation (Mars et al., 2007; van Elswijk et al., 2007; Bestmann
et al., 2008). However, whether the evolution of variability in CSE
can similarly track the state of action preparation remains
unknown.

In a final step, we tested whether changes in CSE variability
were behaviorally relevant, and whether there was any difference
between instructed and value-guided action selection. Firing-rate
variability of single neurons in premotor cortex and the frontal
eye fields correlates with reaction times (Churchland et al., 2006a;
Cohen et al., 2007; Steinmetz and Moore, 2010; Purcell et al.,
2012), thus indicating behavioral relevance of such variability
changes. We tested whether this also applies to human CSE mea-
sures and, furthermore, compared CSE variability before actions
in forced-choice and choice trials. To the best of our knowledge,
we provide the first demonstration in humans that variability in
CSE tracks action preparation.

Materials and Methods
The present study comprises two independent datasets, one acquired at
rest and one acquired during a behavioral choice task. Here we report the
methodological details critical for the present study. Other aspects of
these data have been reported by Smith et al. (2011) and by Klein-Flügge
and Bestmann (2012). All participants were right-handed, completed a
TMS safety screen before enrolment in the study (Rossi et al., 2009), and
gave written informed consent. Experiments were conducted with local
ethics approvals and in accordance with the Declaration of Helsinki.

Experiment 1: identifying the relationship between MEP size and
variability at rest
Participants and experimental procedure. Data were acquired from 46
healthy individuals (age range, 17–31 years; mean age, 21 years; 29 male;
17 female) with no history of neurological or psychiatric disorder, and
with normal or corrected-to-normal vision. In all participants, TMS was
applied to the left hemisphere. In 13 participants, data from the right
hemisphere was also acquired on a different day.

TMS was delivered to M1 through a 90 mm figure-of-eight shaped coil
connected to a monophasic Magstim 200 2 stimulator (Magstim). The
coil was positioned over the optimal position for eliciting an MEP in the
first dorsal interosseous (FDI) of the hand contralateral to the stimula-
tion. It was held tangentially to the skull with the handle oriented poste-
riorly at �45° from the midsagittal axis, thus inducing a posterolateral to
anteromedial current flow in the brain. Resting motor thresholds

(RMTs) were determined in each individual as
the lowest stimulator output at which five
MEPs with a minimum peak-to-peak ampli-
tude of 50 �V were evoked from the resting
FDI in 10 consecutive trials. The group mean
RMT was 42 � 1.2% of maximal stimulator
output.

Surface electromyographic (EMG) record-
ings were obtained using bipolar Ag-AgCl sur-
face electrodes in a tendon-belly montage. The
EMG signal was sampled at 5 kHz (1401, Cam-
bridge Electronic Design), bandpass filtered
between 20 and 1000 Hz (D360, Digitimer),
recorded with an additional 50 Hz notch filter,
and analyzed offline.

Participants rested their hands and TMS was
applied at different stimulation intensities. In-
tensities ranged from 100% RMT to either
100% of stimulator output or to a stimulation
intensity at which the MEP amplitude had
reached a plateau (the maximum stimulation
intensity used corresponded to 190% RMT).
The stimulation intensity was varied pseudo-
randomly in steps of 10% of RMT, with 10

stimuli being applied at every intensity. In the 13 subjects in whom data
for both hemispheres was acquired, the stimulation intensity was in-
creased incrementally in steps of 5% of RMT with five trials per step.

Data preprocessing and statistical analyses. Trials in which background
EMG activity exceeded the mean prestimulation EMG activity by �2 SDs
were discarded offline. All bins with �5 measurements were included if
the average MEP exceeded 0.1 mV. For each bin, the mean and coefficient
of variation (CV � SD/mean) of the MEPs were calculated. Bins that
resulted in mean MEP amplitudes exceeding the mean of all bins by �3
SDs were discarded. This only affected five bins with exceptionally high
average MEP size (all �9 mV). The remaining raw data are shown in
Figure 1A.

The CV was used to assess MEP variability. This approach differs from
studies of task-related neural variability at the single-cell level that typi-
cally use the Fano factor, which describes the ratio of the variance to the
mean spike count (e.g., Mitchell et al., 2007; Churchland et al., 2010a). In
single-cell recordings from nonhuman primates, the Poisson-like distri-
bution of spiking noise implies higher variability with higher firing rates;
use of the Fano factor allows one to control for the natural scaling of
variance with the mean. With TMS-evoked MEPs, by contrast, there is an
upper bound to the MEP amplitude that can be elicited from stimulating
M1 (i.e., when the maximum number of neurons is recruited by the TMS
pulse). Therefore, we expected MEP variability to decrease for larger
stimulation intensities (i.e., larger MEPs). Indeed, previous work has
suggested the CV of MEPs to be inversely related to the MEP amplitude
(Kiers et al., 1993; Devanne et al., 1997; Capaday et al., 1999). However,
previous work has not formally characterized the MEP–CV relationship.

Here, the relationship between MEP amplitude (AMP) and CV was
directly determined. We compared a linear and a logarithmic fit to the
data [i.e., CVpredicted � a*AMP � b and CVpredicted � a*log(AMP) � b].
This required estimation of two free parameters: the slope, a, and inter-
cept, b. The fits were obtained using Matlab’s (Mathworks) polyfit func-
tion. To test whether the data are best characterized by a linear or
logarithmic function, we conducted a residual analysis (Fig. 1B) as well as
a formal Bayesian model comparison using the Bayes factor (BF; Kass
and Raftery, 1995).

In addition to the data obtained with the MEP amplitude cutoff crite-
ria used here (0.1–9 mV), we also fitted data obtained with different
cutoff criteria. This was done to rule out that only the specific cutoff used
and the resulting shape of the logarithmic function explained the results
of Experiment 2. For the lower bound, we used 0.05, 0.1, 0.5, and 1 mV,
for the upper bound, we used 5, 7, and 9 mV, and we tested all resulting
combinations.The superiority of the logarithmic fit over the linear fit was
robust to these changes in the range of included MEP amplitudes, and the

Figure 1. Relationship between MEP amplitude and variability at rest. A, MEP amplitudes are plotted against the CV for all
participants. The relationship between MEP amplitude and CV is well characterized by a logarithmic fit. The logarithmic function
shown was obtained by fitting the merged data of all participants. B, The residuals from both the linear and the logarithmic fit
illustrate the superiority of the logarithmic fit.
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resulting logarithmic fits produced the same
results in Experiment 2 (see Results).

Experiment 2: changes in CSE variability
during action preparation
Participants. Sixteen healthy volunteers (age
range, 19 –31 years; mean age, 22 years; 11
female; 5 male) with no history of neurolog-
ical or psychiatric disorder, and with normal
or corrected-to-normal vision, participated
in this experiment. One participant was ex-
cluded from the analyses because an insuffi-
cient number of trials remained after
preprocessing.

Behavioral task. Participants performed a
decision task with two types of trials, choice
and forced-choice trials. In forced-choice trials
(33%), one option was presented either to the
left or right (with equal probability) of a central
fixation point and it was associated with a re-
ward magnitude and a probability of obtaining
this monetary reward (Fig. 2). For the purpose
of the present study, magnitude and probabil-
ity can be neglected and this can be regarded
simply as a cue instructing the required action.
In choice trials (67%), participants had to make a choice between two
options that differed in reward magnitude and probability. These were
presented to the left and right of fixation. Reward magnitudes were dis-
played as the length of a horizontal bar; reward probabilities were shown
as numbers (Fig. 2). Participants indicated their choice via a button press
with the left or right index finger, corresponding to the location of the
chosen option on the screen. In forced-choice trials, participants could
immediately prepare and execute the required action, while in choice
trials they first had to make a comparison between the expected value of
both options. Critically, however, the processes of action preparation and
execution can be studied in both types of trials. The maximum allowed
reaction time (RT) was 3 s. The chosen option was briefly highlighted
(500 ms) and the outcome presented (500 ms; green border, win; red
border, no reward; Fig. 2).

Participants performed 216 trials of training and a total of 576 trials in
the main experiment (384 choice and 192 forced-choice trials; split in 4
blocks). They were paid a maximum of £2 per block, proportional to
their winnings, plus a fixed amount of £12 for participating in the study.

TMS procedure. TMS pulses were delivered through a 50 mm figure-
of-eight shaped coil connected to a monophasic Magstim 200 2 stimula-
tor (Magstim) and applied over left M1. The coil was held tangentially to
the skull with the handle oriented posteriorly at �45° from the midsag-
ittal axis, thus inducing a posterolateral to anteromedial current flow in
the brain. The stimulation intensity was adjusted to elicit an MEP of �1.5
mV in the right FDI muscle at rest (mean stimulation intensity, 53 � 2%
of the maximum stimulator output).

Surface EMG was recorded from the right FDI using Ag-AgCl surface
electrodes in a tendon-belly montage. The EMG signal was sampled at 1
kHz, bandpass filtered between 3 and 1000 Hz, with an additional 50 Hz
notch filter, fed into a CED 1902 signal conditioner (Cambridge Elec-
tronic Design), digitized using a micro 1401 Mk.II analog-to-digital con-
verter (Cambridge Electronic Design), and stored on a PC running
Spike2 (Cambridge Electronic Design).

To provide a near-continuous sampling of CSE throughout a trial,
TMS was applied at six different time points between trial onset and
response. However, in each trial, only a single TMS pulse was applied,
giving a total of 96 trials per TMS time point. The TMS delivery times
were adjusted for each participant based on their choice and forced-
choice training reaction times. This enabled us to obtain measures of CSE
between trial onset and response, and thus to investigate changes in CSE
during action preparation (Mars et al., 2007; van Elswijk et al., 2007;
Bestmann et al., 2008; Duque and Ivry, 2009; Duque et al., 2010). In
forced-choice trials, the TMS times (t1–t6) corresponded to 10%, 35%,
50%, 60%, 70%, and 80% of the participant’s individual mean forced-

choice RT (FC-RT), thus spanning from trial onset to response. In choice
trials, the first time point, t1, was identical (10% of mean FC-RT), t2 was
set to 45% of the FC-RT, and the remaining four TMS time points were
spaced equidistantly between 45% of the FC-RT and 45%FC-RT � �RT,
where �RT is the RT difference between choice and forced-choice trials
(Klein-Flügge and Bestmann, 2012).

Data preprocessing and statistical analyses. Data preprocessing com-
prised three main stages. First we conservatively discarded trials that may
have spuriously biased our CV estimates. Second, we response-locked
and normalized the data, thus enabling group analyses. Finally, to obtain
continuous measures of MEP size and CVobserved across the trial, we
applied a sliding window to the data.

EMG data were analyzed in Matlab (Mathworks). We extracted peak-
to-peak amplitudes of the TMS-evoked MEPs for every trial. Outlier
MEPs (Grubb’s test p � 0.005) and those contaminated by precontrac-
tion in the target FDI muscle (absolute signal �0.1 mV in the 100 ms
preceding the pulse) were discarded. Trials with MEP amplitudes �0.1
mV were also discarded, thus matching the criterion applied to the rest-
ing data.

Trials with premature (�100 ms) or late (�3000 ms) responses were
discarded from the analyses. In one participant, this left a total of only
49% of trials and the participant was excluded from any further analyses.
In all remaining participants, an average of 15 � 2% of trials were dis-
carded (small amplitude, 5%; outliers, 0.02%; precontraction, 10%; pre-
mature/late response, 0.1%), leaving 494 � 11 of a possible total of 576
trials for further analyses. The relatively high proportion of excluded
trials with precontraction is due to the inherent variability in partici-
pant’s RTs, which meant that TMS would sometimes occur immediately
before, or during, the overt response and therefore coincide with its
corresponding burst in EMG activity.

Because we were interested in changes in MEP size and variability
leading up to the response, trials were sorted according to the time be-
tween the TMS pulse and the actual response (response-locked). This led
to an almost continuous distribution of TMS times, relative to the RT in
a given trial, due to the inherent variability of RTs across trials. All trials
in which TMS was delivered �75 ms before the response (i.e., trials with
unexpectedly short RTs) were discarded, including trials where TMS was
applied during or after the response. This was necessary not only to avoid
ramping effects (Evarts, 1966; Starr et al., 1988; Leocani et al., 2000), but
also because there were too few data for robust averaging in this time
range. Similarly, in trials with unusually long RTs, TMS occurred very
early with respect to the RT of that trial, and these were discarded when
TMS occurred earlier than the participant’s mean RT before response.
Thus, the distance of all TMS times with respect to the response now
ranged between [� average RT] and [�75 ms]. To allow for averaging

Figure 2. Experimental task for assessing CSE variability during action preparation. In choice trials (bottom line), two options
with associated reward probabilities and magnitudes were presented. In forced-choice trials (top line), only one option was
presented. Participants indicated their chosen option via a button press and the chosen option was highlighted (black rectangular
frame), after which the outcome was signaled (green, win; red, no win; green color is shown as white in the figure). Both conditions
required action preparation and execution processes, but only choice trials also incorporated a value decision. A single TMS pulse
was applied to the hand representation of left M1 at different times between trial start and response (black arrows). This provided
a direct measure of changes in corticospinal excitability and its associated variability over time.
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across participants, TMS times were normalized with respect to the
group mean RT, for both choice and forced-choice trials, by multiplying
each trial’s TMS time by the constant factor: group mean RT/participant
mean RT. Consequently, TMS times for all participants with respect to
the response were between [� group RT] and [��75 ms].

To obtain continuous measures of MEP size and CVobserved across
the trial, a sliding-window approach (width, 150 ms; step size, 5 ms) was
applied to the data separately for choice and forced-choice trials and
right-hand versus left-hand responses (i.e., when TMS was applied over
the M1 facilitating a response with the chosen hand, or inhibiting a
response with the unchosen hand, respectively; referred to as “chosen”
and “unchosen” responses henceforth). The sliding window covered the
time between the mean group RT and 75 ms before movement onset (i.e.,
[�835,�75] ms with respect to movement onset on choice trials, and
[�555,�75] ms in forced-choice trials). This led to 123 bins for choice
trials and 67 bins for forced-choice trials, centered between
[�760,�150] ms and [�480,�150] ms, respectively. For every bin, the
mean and CVobserved of all MEPs contained in the corresponding window

were calculated. Time windows containing �5
MEPs were excluded, thus ensuring bin sizes
comparable to the analysis of the resting data
and previous studies (e.g., Darling et al.,
2006). This only affected time bins immedi-
ately before the response, when MEPs were
more likely to be rejected for overt muscle ac-
tivation. The average number of MEPs in each
bin was 29.5 (33.6 for choice conditions and
21.9 for forced-choice conditions).

Main analysis 1: overall changes in CSE
variability during task performance
We first examined the overall effect of task per-
formance on CSE variability for the chosen and
unchosen hand. This analysis was conducted
on the data merged across choice and forced-
choice trials, so only the final 67 bins contained
in both trial types were included. Using the log-
arithmic model derived from the resting data
[see Results (i.e., CVpredicted � �0.23 * log-
(AMP) � 0.59)], the CVobserved of MEPs was
compared with the CVpredicted based on the
changes in MEP amplitude. t tests were con-
ducted at every time bin (n � 67), and cor-
rected for multiple comparisons using the false
discovery rate (FDR) at p � 0.05 (Benjamini
and Hochberg, 1995; Genovese et al., 2002).

We note that it was valid to use the logarith-
mic function for predicting the temporal evo-
lution of the CVobserved because it perfectly
predicted the time course of observed CSE
variability during the first half of a trial (apart
from a constant offset) when motor prepara-
tory processes would have been negligible (Fig.
3C). We therefore defined task-related changes
in variability as those occurring over and above
the changes predicted based on the model. Be-
cause this critically relies on a good model, we
also examined the range of model parameters
that yield the same statistical results.

Main analysis 2: task-related changes in
variability before movement onset
The variability for chosen versus unchosen re-
sponses (merged across choice and forced-
choice conditions) was examined. To isolate
task-related changes in variability, we sub-
tracted the predicted from the observed change
in CV. Separate t tests were conducted for trials
where the right hand was the chosen versus
unchosen response hand. The data in the last

time bin centered at �150 ms (including MEPs measured between
[�225,�75] ms before response) was compared against the data at �230
ms (interval [�305,�165] ms) [i.e., the time at which the CV (CVobserved

� CVpredicted) started to decrease]. Note the difference in degrees of
freedom between unchosen-hand comparisons (n � 1 � 14) and
chosen-hand comparisons (11 � 1 � 10), which is due to fewer subjects
having sufficient useable data for chosen (right hand) responses in the
last time bin.

Main analysis 3: behavioral relevance of changes in
CSE variability
We tested whether trials with faster RTs might be preceded by an earlier
(or stronger) decline in CSE variability compared with those with slower
RTs. In this analysis, we were interested in the action-planning process,
but not the decision process required in choice trials. Therefore, we only
included forced-choice trials (i.e., when the visual stimulus instructed
actions without any ambiguity). Forced-choice trials also had more con-
sistent RTs than choice trials and any differences in RT could be related

Figure 3. Variability changes in CSE reflect action preparation of the chosen action. A, B, Observed mean MEP amplitude (A) and
SD (B) for right-hand and left-hand responses (i.e., when left M1 facilitates the chosen or inhibits the unchosen action), averaged
across choice and forced-choice trials, and plotted over time with respect to movement onset. Because RTs were shorter in
forced-choice trials, only the period from �555 ms before response is shown (first bin centered at �480 ms). C, Observed (red,
unchosen; blue, chosen) MEP variability (CV) during the task was elevated compared with that predicted based on the model
obtained from the resting data (black). The insets show the same data but observed and predicted curves were aligned based on
the first 100 ms of the epoch. D, The difference between observed and predicted variability reveals a significant task-related
decrease in MEP variability in the last 230 ms before movement onset (*p � 0.05), which is specific to trials in which the probed
hemisphere (here left) facilitated the chosen (here right hand) response. This is consistent with the decrease in variability observed
during action preparation in monkey premotor cortex and may thus track how neurons acquire the optimal state for action
execution. Error bars indicate SEM.
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back to the optimization of movement planning, and were not overshad-
owed, for instance, by a more difficult choice process. We separated fast
and slow forced-choice responses using a median split, separately for
chosen and unchosen response trials. This yielded equal numbers of trials
in the respective fast and slow conditions. Because this also resulted in
different average trial durations, the RT of every trial was scaled to 1 (with
0 now denoting trial onset and 1 the time of button press). A sliding-
window approach was used, as described above, to analyze the temporal
evolution of changes in MEP size and variability. For this analysis, the
step size and window size were slightly larger because only forced-choice
trials (33% of trials) were included, and these were further split into slow
and fast trials. The step size in the range [0,1] was 0.02 (corresponding to
�10 ms) and the window size 0.35 (corresponding to �200 ms). Win-
dows with �3 MEPs were excluded. For each time point, t tests were
performed on the CVobserved (or difference between observed and pre-
dicted CV) of fast and slow trials, separately for each hand, and on chosen
versus unchosen responses, separately for fast and slow trials. FDR cor-
rection for multiple comparisons was used unless otherwise stated.

Main analysis 4: CSE variability in choice versus
forced-choice trials
To ascertain whether the additional cognitive processing required in
choice trials is reflected in specific changes in CSE variability in either the
chosen or unchosen hand (i.e., when the examined hemisphere facilitates
the chosen or inhibits the unchosen action, respectively), t tests were used
to compare task-related changes in CV (CVobserved � CVpredicted) be-
tween choice and forced choice trials, separately for chosen and uncho-
sen responses.

Root mean square analysis
Finally, to rule out the possibility that any of our effects might be caused
by trials with elevated background EMG, we calculated the root mean
square (RMS) of the EMG signal in the 100 ms before the TMS pulse
(Mars et al., 2009). This measure, instead of the MEP amplitude, was then
subjected to all analyses and statistical tests reported for MEPs and CVs.

Results
Relationship between MEP size and variability at rest
The raw data from all participants are shown in Figure 1A. The
CV of the MEPs is plotted as a function of MEP amplitude. Bayes-
ian model comparison revealed that a logarithmic function pro-
vided a better fit to the data than a linear function (BF � 54.5).
The Bayes factor is the ratio of the log-likelihoods of the linear
and logarithmic models. A difference of 54.5 corresponds to
exp(54.5) � 4.6e23-to-1 odds, and therefore decisive evidence in
favor of the logarithmic model (Bestmann et al., 2008). This re-
sult holds for different MEP inclusion criteria, and thus small
variations in model fits (all BF, �4). In Figure 1A, the resulting
logarithmic fit [CVpredicted � �0.23*log(AMP) � 0.59] is over-
laid on the merged data of all participants. The residuals of both
the linear and the logarithmic fits are shown in Figure 1B.

Changes in CSE variability during action preparation in
choice and forced-choice contexts
Behavioral results
Reaction times were significantly longer for choice versus forced-
choice trials (choice, 835 � 33 ms; forced choice, 553 � 17 ms;
t(14) � 10.29, p � 6.54e– 08), reflecting the time required to make
a value decision on choice trials. More details about the behav-
ioral performance on the choice task have been reported previ-
ously (Klein-Flügge and Bestmann, 2012).

Variability in CSE is increased during task compared with rest
Over the course of a trial, CSE of responses evoked from TMS
over left M1 increased for the right-hand (i.e., contralateral) re-
sponses and decreased for left-hand (i.e., ipsilateral) responses
(Fig. 3A). This difference in MEP amplitude between chosen and

unchosen action representations increased progressively to-
ward the overt response, and average changes in CSE thus
reflected the prepared versus unprepared action. The change
in MEP amplitude was accompanied by changes in MEP SD, as
shown in Figure 3B.

The predicted change in MEP variability (CVpredicted) was ob-
tained for each participant based on the observed changes in MEP
amplitude using the logarithmic function described above. Com-
paring predicted and observed CV showed that variability was
consistently higher during task performance compared with rest
at all times in a trial (p � 0.05, FDR-corrected for every time
point for both chosen and unchosen responses; Fig. 3C). Thus,
we observed a constant difference between variability at rest and
during task performance.

Decreases in CSE variability for the chosen hand immediately
before response
Examining the change in CSE variability across time for the cho-
sen hand revealed a task-related decrease in CV (CVobserved �
CVpredicted) immediately before the overt response, meaning this
decrease occurred over and above changes in variability expected
based on changes in MEP amplitude (bins centered at �230 ms vs
�150 ms; CVobserved � CVpredicted chosen/right hand; t(10) �
4.96, p � 5.66e– 04; Fig. 3D). From �230 ms before the response,
the observed pattern for the chosen action representation thus
resembled the decrease in variability found in direct recordings
from monkey premotor cortex, where firing rates become less
variable as the monkey prepares to move (Churchland et al.,
2006a).

This result relies on a good model for CVpredicted because
CVpredicted is subtracted from CVobserved. Importantly, the result
was robust to any change in the intercept parameter of CVpredicted,
and held true for slope parameters in the range [�0.5,infinity].
Thus, our conclusions were not dependent on the exact format of
the model used to determine CVpredicted.

There are three additional observations. First, the task-related
decrease in CV (CVobserved � CVpredicted) was not observed when
the left hand was used to make the response, i.e., when the stim-
ulated hemisphere did not facilitate the chosen action (bins cen-
tered at �230 ms vs �150 ms; CVobserved � CVpredicted unchosen/
left hand; t(14) � �0.09, p � 0.93). Second, for the chosen
response, variability started decreasing �80 ms later than pre-
dicted based on the logarithmic model (Fig. 3C), so that the dif-
ference between observed and predicted CV showed an increase
in variability that preceded the later decrease (Fig. 3D). Third,
despite the unspecific increase in variability during task perfor-
mance, the dynamics of CSE variability for the initial half of a trial
were correctly predicted by the relationship characterized at rest,
as shown by a stable difference between predicted and observed
CV up until �300 ms before movement onset (Fig. 3D).

Behavioral relevance of decrease in CSE variability of chosen hand
To examine whether the decline in CSE variability observed im-
mediately before movement onset was behaviorally meaningful
for the execution of the action, we separately examined the faster
and slower half of trials. Based on findings in nonhuman pri-
mates (Churchland et al., 2006a), we expected that faster re-
sponses may be facilitated by lower premovement variability,
which reflects a more consistent neuronal state. Because we were
interested in action planning and preparation, as opposed to the
choice process itself, this analysis was restricted to forced-choice
trials. In forced-choice trials, there was no ambiguity about the
response because the action was explicitly instructed, and thus
any differences in RT across trials can be more readily attributed
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to differences in the optimization of action planning. The average
RT on fast compared with slow forced-choice trials was 453 � 11
ms and 625 � 23 ms, respectively. To allow for comparison of
trials with such different RTs, the RT of every trial was scaled to 1
(with 0 denoting trial onset, and 1 the time of button press).

CSE increased faster for fast compared with slow responses in
the chosen hand (Fig. 4A). Furthermore CSE variability was in-
deed found to be smaller preceding a fast compared with a slow
response (p � 0.05, FDR-corrected on 10 consecutive data points
between 52 and 70% of the trial’s RT; Fig. 4B, right). For the
unchosen hand, no such difference between the CVobserved in
fast-response versus slow-response trials was observed (p � 0.05
for all time points; Fig. 4B, left). While for fast responses, the
CVobserved of the chosen hand already decreased with respect to
the CVobserved of the unchosen hand in this time window (8 of
these 10 data points, p � 0.05, FDR-corrected), this was not the
case for slow responses (all p � 0.05). For slow responses, only the
last three time points of the CVobserved of the chosen and uncho-
sen hand (corresponding to 77– 82% of the trial’s RT) were sig-
nificantly different when using FDR correction (p � 0.05). This
was true for the last 13 time points (i.e., 57– 82%) for fast re-
sponses. To verify that this earlier variability decrease in fast-
response trials was task-related, we calculated the difference
between observed and predicted CV (Fig. 4C). This revealed a
more pronounced and earlier task-related decrease in fast com-
pared with slow trials in the chosen hand; however, this effect did
not reach FDR-corrected significance (smallest uncorrected p
value, p � 0.0061 at 64%; Fig. 4C). We note, however, that this
analysis had reduced power because forced-choice trials make up
only 33% of trials, which are further reduced during preprocess-

ing, and split into four conditions here. Thus, each time course
(Fig. 4A–C) is derived from only �7% of trials. Nevertheless,
nine consecutive values between 55 and 72% of the trial’s
RT reached uncorrected significance in the chosen hand for
CVobserved � CVpredicted (all p � 0.035, uncorrected).

Choice-specific changes in CSE variability in the unchosen hand
In a final analysis, we asked whether the different cognitive pro-
cesses involved in choice and forced-choice trials differentially
affected the underlying CSE variability. Comparing the CV
(CVobserved � CVpredicted) in the chosen hand for choice versus
forced-choice trials revealed no significance differences (all p �
0.05; Fig. 5, right). However, in the unchosen hand, there was a
significant difference between choice and forced-choice trials
(p � 0.05, uncorrected at 19 consecutive time bins with bin cen-
ters in the range [�320,�230] ms; Fig. 5, left). Further examina-
tion of the observed effect revealed that it was driven by an
earlier-than-expected decrease in variability in choice trials in the
unchosen hand (Fig. 5). This suggests that the additional process-
ing required during a value-based decision results in more con-
sistent neuronal states. This effect is absent when a response is
directly instructed. The increased consistency seems to be specific
to the population representing the unchosen action and is thus
likely to reflect inhibitory processes mediated by other regions
that converge on M1.

Effects are not tied to exact form of logarithmic relationship
Changes in CSE variability predicted based on the logarithmic rela-
tionship determined at rest [CVpredicted ��0.23*log(AMP) � 0.59]
were subtracted from the observed CSE variability (CVobserved) in

Figure 4. Decreases in CSE variability distinguish between slow and fast actions. A, Observed mean MEP amplitude for the chosen and unchosen hand, separately for fast (continuous) and slow
(dotted) forced-choice trials. Because of the different average trial duration of slow and fast trials, the RT of every trial was scaled to 1 (with 0 now denoting trial onset and 1 the time of button press).
B, Variability (CV) decreases earlier on fast compared with slow trials for the chosen hand, but not for the unchosen hand (black stars, FDR-corrected p � 0.05; gray stars, uncorrected p � 0.05; gray
area highlights area with FDR-corrected significance). Insets show the expected CV (i.e., the CVpredicted based on observed changes in MEP size) for the chosen versus unchosen hand for direct
comparison with the changes actually observed. C, The difference between CVobserved and CVpredicted, shown separately for trials with fast and slow responses. Decreases in CV for responses with the
chosen hand occur over and above those predicted based on intrinsic CSE variability, both on slow and fast trials, and are thus task-related. Importantly, the task-related portion of the CV (CVobserved

� CVpredicted) decreases earlier in fast-response trials (gray stars, uncorrected p � 0.05), compared with slow-response trials. Changes in variability are thus directly related to behavior and the
optimization of the prepared action representation. Error bars indicate SEM.
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all main analyses (Figs. 3D, 4C, 5). To test
the robustness of our findings against
variations of this function, we repeated
these analyses with slightly modified fits,
which we obtained by including a differ-
ent range of MEP amplitudes (see Materi-
als and Methods). By definition, changes
in the intercept parameter had no effect
on any results because an upward or
downward shift of all CV time courses
does not affect their differential relation-
ship. The changes in the slope parameter
from these alternative fits (range, �0.18 –
�0.24) all resulted in the same statistical
results, showing that our conclusions do
not rely on the exact form of the logarith-
mic function. Note that even larger devi-
ations up to �0.4 for the slope still allow
us to draw the same conclusions.

Elevated background EMG does not
explain the observed changes in CSE variability
Trials with muscle precontraction in the FDI were discarded
from all analyses. To further ensure that none of our effects were
caused by subthreshold fluctuations in background EMG, we
repeated all analyses and statistical tests on the RMS (see Materi-
als and Methods). None of the statistical tests reported in the
manuscript were significant when performed on the mean RMS
instead of the mean/CV of the MEPs, showing that muscle pre-
contraction was not driving any of our effects.

Discussion
We report changes in the variability of human CSE before a
movement that are specific to the chosen action. This shows that
CSE variability can provide insight into the preparatory state of
the motor system, analogous to changes in firing-rate variability
during action preparation in monkeys (Churchland et al., 2006a).

State effects of variability: task versus rest
We first characterized the relationship between CSE and variabil-
ity at rest. This provided a detailed model of intrinsic CSE vari-
ability and allowed us to identify any additional process-related
changes in CSE variability during task performance. When com-
paring CSE variability during task performance with that found
for equivalent MEP amplitudes at rest, we found an overall vari-
ability increase present throughout the trial. Heightened levels of
firing-rate variability have similarly been reported in a matching-
pennies choice task in nonhuman primates (Lee and Seo, 2011),
even though this study focused on very different regions (pre-
frontal/parietal) and processes (stimulus-evoked and outcome-
evoked changes in variability rather than action preparation).
There are several potential explanations for this effect: increased
levels of alertness during task performance may lead to elevated
CSE and may vary across trials, and there was variability in the
presented behavioral events, such as varying probabilities and
magnitudes, which can explain a large proportion of trial-by-trial
variability in neural firing rates (Lee and Seo, 2011). Importantly,
the heightened variability is a general effect of state and indepen-
dent of specific motor preparatory processes of main interest in
this study.

Variability decline during action preparation supports
optimal subspace hypothesis
Our main finding was a decrease in CSE variability from �230 ms
before movement, which was specific to the responding hand.
Importantly, this effect was task-related in that it occurred over
and above the variability changes trivially expected based on the
concurrent rise in CSE accompanying motor preparation. This
confirmed our main hypothesis showing that read-outs of the
variability of CSE obtained at a population level in humans using
TMS over M1 (i.e., the MEP) can track the consistency of the state
of preparation. Work in nonhuman primates has previously es-
tablished that changes in variability can provide meaningful in-
sights into the state of motor cortex (Churchland et al., 2006a;
Mandelblat-Cerf et al., 2009; Rickert et al., 2009). It has been
suggested that the increasingly consistent firing rates in monkey
premotor cortex during action preparation (Churchland et al.,
2006a) reflect the system’s approach to an optimal state for a
particular movement (Churchland et al., 2006b; Churchland and
Shenoy, 2007; Rickert et al., 2009). The optimization process is
thought to produce a movement with the desired properties
when firing rates converge to a specific state, with different opti-
mal states for different movements (Churchland et al., 2010b;
Afshar et al., 2011; Shenoy et al., 2011; “optimal subspace hypoth-
esis”). This optimization process should thus be specific to the
performed action. In the present study, it should therefore be
observed only in right-hand response trials where the stimulated
left hemisphere enabled execution of the action. Indeed, CSE
became increasingly consistent for the chosen (right) but not for
the unchosen (left) hand, at a time scale consistent with direct
recordings (Churchland et al., 2006a).

Interestingly, the decrease in CSE variability for the chosen
response started later than was predicted from the concurrent rise
in MEP amplitude. The difference between observed and pre-
dicted CV thus revealed a task-related variability increase that
preceded the subsequent decline. This observation is striking in
that the variability increase occurs around the time when many
critical task-related inputs are likely to converge onto M1. In our
task, such inputs differ on a trial-by-trial basis because the offered
values change, which in turn will affect cortical (and possibly
spinal) structures to varying degrees across different trials. Previ-
ous data support the idea that the information encoded by neu-
rons is conveyed through their trial-by-trial variability (Scaglione

Figure 5. Earlier decrease of variability for unchosen hand in choice trials but not in forced-choice trials. The difference between
CVobserved and CVpredicted is displayed separately for choice and forced-choice trials. For the chosen hand, MEP variability does not
differ between choice and forced-choice trials (right). For the unchosen hand, however, there is a significant difference between
choice and forced-choice trials between 320 and 230 ms preceding the response (gray stars, p�0.05, uncorrected). This difference
is driven by an early decrease in variability for unchosen actions (here, left-hand responses) present only in choice trials. Together,
this suggests that the inhibition of an unchosen action resulting from a choice process also leads to diminished across-trial
variability and thus a more consistent neuronal state. Error bars indicate SEM.
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et al., 2011). While the motivation to perform the chosen action
will vary across trials in our task, the action itself will be consistent
across trials; this could explain the co-occurrence of both an in-
crease and a decrease in task-related variability we observe.

Possible sources of changes in variability of MEPs
Previous nonhuman primate work showed decreases in firing-
rate variability during action preparation in dorsal premotor cor-
tex (PMd; Churchland et al., 2006a). Here we report similar
effects in humans, albeit at a population level. Of importance here
is that the MEP measured in our study is a (smoothed) com-
pound signal of several descending corticospinal volleys, includ-
ing an initial subcortical D-wave and several subsequent I-waves
(Di Lazzaro et al., 2008). While the initial D-wave and first I-wave
are practically resistant to changes by any cognitive manipula-
tion, later I-waves are largely under the influence from transcor-
tical (likely to be premotor or postcentral) inputs into M1 at
latencies between 2.4 and 7 ms (Di Lazzaro et al., 2008), and are
readily amenable to cognitive influences (Bestmann, 2012). This
means that the present MEP effects are unlikely to be driven
purely by changes at the spinal level, though this cannot be ruled
out based on the current data and should be addressed in future
work. Instead, they more likely originate from premotor inputs
into M1, with PMd being a likely candidate region given its ana-
tomical location (Dum and Strick, 1991; Tomassini et al., 2007)
and functional role in action preparation (e.g., Schluter et al.,
1998; Pastor-Bernier et al., 2012).

Variability changes after trial onset
Task-related decreases in variability are not specific to the motor
system. Similar variability changes have been observed in several
cortical regions and in a variety of tasks following presentation of
a sensory stimulus, suggesting that sensory input stabilizes neu-
ronal firing rates (Churchland et al., 2010a and references
therein). Here, we did not observe such a stimulus-locked de-
crease in CSE variability, which could have several explanations.
First, our design was not optimized for that time window because
sampling of CSE was sparse close to trial onset. Second, our visual
stimuli differed on a trial-by-trial basis in terms of their associ-
ated probabilities and magnitudes, resulting in different levels of
motivation and choice difficulty. This introduced additional
variability that may have masked stimulus-evoked decreases in
variability. It also meant that action preparation was not very
consistent early in the trial. Similarly, Churchland et al. (2006a,
Fig. 6C) did not observe stimulus-evoked decreases in variability
when less emphasis was placed on consistent action preparation
early on. Finally, the CSE measure recorded in our experiment
might be less sensitive to stimulus-evoked influences. When
comparing different brain regions, the relative variability decline
after stimulus onset indeed seems to be most pronounced in
visual brain regions (V1, V4, MT), but less so in orbitofrontal or
premotor regions (Churchland et al., 2010a, Fig. 3). Consistent
with this, it has been suggested that the time course of variability
relates to the information encoded by the neurons in that partic-
ular brain region (Lee and Seo, 2011; Scaglione et al., 2011).

Behavioral relevance of temporal changes in variability
The increased consistency of the neuronal state before a response
is thought to bear behavioral relevance for optimizing action
preparation. For example, in premotor cortex and the frontal
eye fields, firing-rate variability correlates with reaction time
(Churchland et al., 2006a; Cohen et al., 2007; Steinmetz and
Moore, 2010; Purcell et al., 2012), and variability declines as more

information about the upcoming movement is revealed (Rickert
et al., 2009). Similarly, variability in other brain regions relates to
task aspects, such as attention (Cohen and Maunsell, 2009) and
learning (Mandelblat-Cerf et al., 2009). Here we found an earlier
variability decrease in trials with fast compared with slow re-
sponses in the chosen hand, confirming that the observed
changes in variability before movement onset are also behavior-
ally meaningful at the population level.

Variability changes reflect choice-specific processes
Finally, our data also revealed an earlier decrease in variability for
the unchosen hand that was specific to choice trials. Choices in a
visual motion task can be predicted based on changes in the vari-
ability of neuronal responses in monkey area MT (Britten et al.,
1996). However, this is the first time variability could be com-
pared between choice and forced-choice contexts. Choice pro-
cesses are thought to facilitate action selection in motor regions
through biased competition (Cisek, 2006; Pastor-Bernier and
Cisek, 2011), which is fuelled by inputs from other regions. In-
deed, such signatures of choice-based competition can modulate
CSE (Klein-Flügge and Bestmann, 2012), but whether choice
processes might similarly be tracked by changes in variability has
thus far not been investigated. Consistent with the idea that a
decline in variability reflects an optimization process, the decline
in CSE variability for unselected actions observed here may re-
flect how an increased consistency in the neuronal state is
achieved through biasing inhibitory processes. This optimization
process would be expected to start earlier with respect to the
response in choice compared with forced-choice contexts, which
is consistent with our finding.

Validity of TMS as a novel approach for studying changes in
CSE variability in humans
While our results are congruent with recent reports from nonhu-
man primates, there are notable differences in the measures used
here compared with those obtained with direct recordings. Pre-
cisely how these two measures relate remains unclear, but we note
that this applies to all human TMS-M1 studies, not just the
variability-based analyses reported here. Single-unit recordings
measure variability in spiking across trials in the same neuron
(often for many neurons). Instead, we here used noninvasive
techniques to find out whether variability of a population re-
sponse can predict the state of action preparation, and thus
whether the changes observed at the single-unit level can also be
seen at the population level in humans. Both theoretical work
(Sussillo and Abbott, 2009; Abbott et al., 2011) and data from
direct recordings (Churchland et al., 2010a) confirm that the
previously observed decline in neural variability reflects a net-
work property. Indeed, to be functionally relevant, a large pro-
portion of neurons must exhibit similar reductions in firing-rate
variability during action preparation, and exciting this popula-
tion at once using TMS will similarly yield less-variable output.
To the best of our knowledge, our study is the first demonstration
in humans that the evolution of CSE variability tracks action
preparation and may also reflect influences from more complex
processes, such as decision making.
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